Artwork

InnehÄll tillhandahÄllet av TWIML and Sam Charrington. Allt poddinnehÄll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahÄlls direkt av TWIML and Sam Charrington eller deras podcastplattformspartner. Om du tror att nÄgon anvÀnder ditt upphovsrÀttsskyddade verk utan din tillÄtelse kan du följa processen som beskrivs hÀr https://sv.player.fm/legal.
Player FM - Podcast-app
GĂ„ offline med appen Player FM !

Inside Nano Banana 🍌 and the Future of Vision-Language Models with Oliver Wang - #748

1:03:39
 
Dela
 

Manage episode 508093774 series 2355587
InnehÄll tillhandahÄllet av TWIML and Sam Charrington. Allt poddinnehÄll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahÄlls direkt av TWIML and Sam Charrington eller deras podcastplattformspartner. Om du tror att nÄgon anvÀnder ditt upphovsrÀttsskyddade verk utan din tillÄtelse kan du följa processen som beskrivs hÀr https://sv.player.fm/legal.

Today, we’re joined by Oliver Wang, principal scientist at Google DeepMind and tech lead for Gemini 2.5 Flash Image—better known by its code name, “Nano Banana.” We dive into the development and capabilities of this newly released frontier vision-language model, beginning with the broader shift from specialized image generators to general-purpose multimodal agents that can use both visual and textual data for a variety of tasks. Oliver explains how Nano Banana can generate and iteratively edit images while maintaining consistency, and how its integration with Gemini’s world knowledge expands creative and practical use cases. We discuss the tension between aesthetics and accuracy, the relative maturity of image models compared to text-based LLMs, and scaling as a driver of progress. Oliver also shares surprising emergent behaviors, the challenges of evaluating vision-language models, and the risks of training on AI-generated data. Finally, we look ahead to interactive world models and VLMs that may one day “think” and “reason” in images.

The complete show notes for this episode can be found at https://twimlai.com/go/748.

  continue reading

777 episoder

Artwork
iconDela
 
Manage episode 508093774 series 2355587
InnehÄll tillhandahÄllet av TWIML and Sam Charrington. Allt poddinnehÄll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahÄlls direkt av TWIML and Sam Charrington eller deras podcastplattformspartner. Om du tror att nÄgon anvÀnder ditt upphovsrÀttsskyddade verk utan din tillÄtelse kan du följa processen som beskrivs hÀr https://sv.player.fm/legal.

Today, we’re joined by Oliver Wang, principal scientist at Google DeepMind and tech lead for Gemini 2.5 Flash Image—better known by its code name, “Nano Banana.” We dive into the development and capabilities of this newly released frontier vision-language model, beginning with the broader shift from specialized image generators to general-purpose multimodal agents that can use both visual and textual data for a variety of tasks. Oliver explains how Nano Banana can generate and iteratively edit images while maintaining consistency, and how its integration with Gemini’s world knowledge expands creative and practical use cases. We discuss the tension between aesthetics and accuracy, the relative maturity of image models compared to text-based LLMs, and scaling as a driver of progress. Oliver also shares surprising emergent behaviors, the challenges of evaluating vision-language models, and the risks of training on AI-generated data. Finally, we look ahead to interactive world models and VLMs that may one day “think” and “reason” in images.

The complete show notes for this episode can be found at https://twimlai.com/go/748.

  continue reading

777 episoder

Todos os episĂłdios

×
 
Loading …

VĂ€lkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den Àr den bÀsta podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna pÄ det hÀr programmet medan du utforskar
Spela