Artwork

Innehåll tillhandahållet av The New Stack Podcast and The New Stack. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av The New Stack Podcast and The New Stack eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

What’s Driving the Rising Cost of Observability?

24:55
 
Dela
 

Manage episode 463995935 series 2574278
Innehåll tillhandahållet av The New Stack Podcast and The New Stack. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av The New Stack Podcast and The New Stack eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Observability is expensive because traditional tools weren’t designed for the complexity and scale of modern cloud-native systems, explains Christine Yen, CEO of Honeycomb.io. Logging tools, while flexible, were optimized for manual, human-scale data reading. This approach struggles with the massive scale of today’s software, making logging slow and resource-intensive. Monitoring tools, with their dashboards and metrics, prioritized speed over flexibility, which doesn’t align with the dynamic nature of containerized microservices. Similarly, traditional APM tools relied on “magical” setups tailored for consistent application environments like Rails, but they falter in modern polyglot infrastructures with diverse frameworks.

Additionally, observability costs are rising due to evolving demands from DevOps, platform engineering, and site reliability engineering (SRE). Practices like service-level objectives (SLOs) emphasize end-user experience, pushing teams to track meaningful metrics. However, outdated observability tools often hinder this, forcing teams to cut back on crucial data. Yen highlights the potential of AI and innovations like OpenTelemetry to address these challenges.

Learn more from The New Stack about the latest trends in observability:

Honeycomb.io’s Austin Parker: OpenTelemetry In-Depth

Observability in 2025: OpenTelemetry and AI to Fill In Gaps

Observability and AI: New Connections at KubeCon

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episoder

Artwork
iconDela
 
Manage episode 463995935 series 2574278
Innehåll tillhandahållet av The New Stack Podcast and The New Stack. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av The New Stack Podcast and The New Stack eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Observability is expensive because traditional tools weren’t designed for the complexity and scale of modern cloud-native systems, explains Christine Yen, CEO of Honeycomb.io. Logging tools, while flexible, were optimized for manual, human-scale data reading. This approach struggles with the massive scale of today’s software, making logging slow and resource-intensive. Monitoring tools, with their dashboards and metrics, prioritized speed over flexibility, which doesn’t align with the dynamic nature of containerized microservices. Similarly, traditional APM tools relied on “magical” setups tailored for consistent application environments like Rails, but they falter in modern polyglot infrastructures with diverse frameworks.

Additionally, observability costs are rising due to evolving demands from DevOps, platform engineering, and site reliability engineering (SRE). Practices like service-level objectives (SLOs) emphasize end-user experience, pushing teams to track meaningful metrics. However, outdated observability tools often hinder this, forcing teams to cut back on crucial data. Yen highlights the potential of AI and innovations like OpenTelemetry to address these challenges.

Learn more from The New Stack about the latest trends in observability:

Honeycomb.io’s Austin Parker: OpenTelemetry In-Depth

Observability in 2025: OpenTelemetry and AI to Fill In Gaps

Observability and AI: New Connections at KubeCon

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

  continue reading

301 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela