Artwork

Innehåll tillhandahållet av Daniel Reid Cahn. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Reid Cahn eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

The End of RAG (with Donato Riccio)

40:13
 
Dela
 

Manage episode 400073529 series 3514761
Innehåll tillhandahållet av Daniel Reid Cahn. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Reid Cahn eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

ML Engineer and tech writer Donato Riccio wrote an article entitled "The End of RAG?" discussing what might replace Retrieval Augmented Generation in the near future. The article was received as highly controversial within the AI echo chamber, so I brought Donato on the podcast to discuss RAG, why people are so obsessed with vector databases, and the upcoming research in AI that might replace it.

Takeaways:

  • RAG is necessary due to LLMs' limited context window and scalability issues, and the need to avoid hallucinations and outdated information.
  • Larger/infinite context window models and linear-scaling models (e.g. RWKV, Eagle) may allow for learning through forward propagation, allowing for more efficient and effective knowledge acquisition
  • Agentic flows are likely far more powerful than RAG - and when they actually start working consistently, we may see the need for vector databases dramatically reduced.
  • RAG libraries and abstracts can be helpful for getting off the ground but don't solve the hard problems in specific vertical LLM use cases.
  • RAG vs Agents, and the complex ways that vertical AI approach RAG in practice

Share your thoughts with us at hello@slingshot.xyz or tweet us @slingshot_ai.

  continue reading

23 episoder

Artwork
iconDela
 
Manage episode 400073529 series 3514761
Innehåll tillhandahållet av Daniel Reid Cahn. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Reid Cahn eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

ML Engineer and tech writer Donato Riccio wrote an article entitled "The End of RAG?" discussing what might replace Retrieval Augmented Generation in the near future. The article was received as highly controversial within the AI echo chamber, so I brought Donato on the podcast to discuss RAG, why people are so obsessed with vector databases, and the upcoming research in AI that might replace it.

Takeaways:

  • RAG is necessary due to LLMs' limited context window and scalability issues, and the need to avoid hallucinations and outdated information.
  • Larger/infinite context window models and linear-scaling models (e.g. RWKV, Eagle) may allow for learning through forward propagation, allowing for more efficient and effective knowledge acquisition
  • Agentic flows are likely far more powerful than RAG - and when they actually start working consistently, we may see the need for vector databases dramatically reduced.
  • RAG libraries and abstracts can be helpful for getting off the ground but don't solve the hard problems in specific vertical LLM use cases.
  • RAG vs Agents, and the complex ways that vertical AI approach RAG in practice

Share your thoughts with us at hello@slingshot.xyz or tweet us @slingshot_ai.

  continue reading

23 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide