Artwork

Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

WHY Are Probability And Stats Foundational to ML and DL?

13:39
 
Dela
 

Manage episode 445331385 series 3605861
Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Probability and statistics are fundamental components of machine learning (ML) and deep learning (DL) because they provide the mathematical framework for understanding and analyzing data, which is crucial for making predictions and decisions.

This excerpt from the "Dive into Deep Learning" documentation explains the essential concepts of probability and statistics, which are crucial for understanding machine learning. The text introduces fundamental ideas like sample space, events, probability functions, and random variables, highlighting the distinction between discrete and continuous variables. It then delves into the relationships between multiple random variables, emphasizing the importance of conditional probabilities, Bayes' Theorem, and independence. The excerpt also covers expectations and variances, illustrating how they can be used to measure the average value and the spread of data. Finally, it explores the concepts of aleatoric and epistemic uncertainty, providing a framework for understanding the limitations of machine learning models and the role of data in improving their accuracy.

Read more: https://d2l.ai/chapter_preliminaries/probability.html

  continue reading

71 episoder

Artwork
iconDela
 
Manage episode 445331385 series 3605861
Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Probability and statistics are fundamental components of machine learning (ML) and deep learning (DL) because they provide the mathematical framework for understanding and analyzing data, which is crucial for making predictions and decisions.

This excerpt from the "Dive into Deep Learning" documentation explains the essential concepts of probability and statistics, which are crucial for understanding machine learning. The text introduces fundamental ideas like sample space, events, probability functions, and random variables, highlighting the distinction between discrete and continuous variables. It then delves into the relationships between multiple random variables, emphasizing the importance of conditional probabilities, Bayes' Theorem, and independence. The excerpt also covers expectations and variances, illustrating how they can be used to measure the average value and the spread of data. Finally, it explores the concepts of aleatoric and epistemic uncertainty, providing a framework for understanding the limitations of machine learning models and the role of data in improving their accuracy.

Read more: https://d2l.ai/chapter_preliminaries/probability.html

  continue reading

71 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide