Artwork

Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Automating Scientific Discovery: ScienceAgentBench

9:49
 
Dela
 

Manage episode 449068756 series 3605861
Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Introducing, ScienceAgentBench, a new benchmark for evaluating language agents designed to automate scientific discovery. The benchmark comprises 102 tasks extracted from 44 peer-reviewed publications across four disciplines, encompassing essential tasks in a data-driven scientific workflow such as model development, data analysis, and visualization. To ensure scientific authenticity and real-world relevance, the tasks were validated by nine subject matter experts. The paper presents an array of evaluation metrics for assessing program execution, results, and costs, including a rubric-based approach for fine-grained evaluation. Through comprehensive experiments on five LLMs and three frameworks, the study found that the best-performing agent, Claude-3.5-Sonnet with self-debug, could only solve 34.3% of the tasks using expert-provided knowledge. These findings highlight the limitations of current language agents in fully automating scientific discovery, emphasizing the need for more rigorous assessment and future research on improving their capabilities for data processing and utilizing expert knowledge.

Read the paper: https://arxiv.org/pdf/2410.05080

  continue reading

71 episoder

Artwork
iconDela
 
Manage episode 449068756 series 3605861
Innehåll tillhandahållet av Brian Carter. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Brian Carter eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Introducing, ScienceAgentBench, a new benchmark for evaluating language agents designed to automate scientific discovery. The benchmark comprises 102 tasks extracted from 44 peer-reviewed publications across four disciplines, encompassing essential tasks in a data-driven scientific workflow such as model development, data analysis, and visualization. To ensure scientific authenticity and real-world relevance, the tasks were validated by nine subject matter experts. The paper presents an array of evaluation metrics for assessing program execution, results, and costs, including a rubric-based approach for fine-grained evaluation. Through comprehensive experiments on five LLMs and three frameworks, the study found that the best-performing agent, Claude-3.5-Sonnet with self-debug, could only solve 34.3% of the tasks using expert-provided knowledge. These findings highlight the limitations of current language agents in fully automating scientific discovery, emphasizing the need for more rigorous assessment and future research on improving their capabilities for data processing and utilizing expert knowledge.

Read the paper: https://arxiv.org/pdf/2410.05080

  continue reading

71 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela