Artwork

Innehåll tillhandahållet av open.intel. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av open.intel eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

AI Development and Guardrails

35:38
 
Dela
 

Manage episode 436656079 series 3446189
Innehåll tillhandahållet av open.intel. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av open.intel eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

87 episoder

Artwork
iconDela
 
Manage episode 436656079 series 3446189
Innehåll tillhandahållet av open.intel. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av open.intel eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Ezequiel Lanza and Katherine Druckman from Intel's Open Ecosystem team chat with Daniel Whitenack, founder and CEO of Prediction Guard. They discuss the importance and implementation of guardrails for securing generative AI platforms and cover the operational challenges and security considerations of running AI models, the concept of responsible AI, and practical advice for integrating guardrails into AI workflows. Additionally, the conversation touches on multi-model integrations, open source contributions, and the significance of vendor-neutral frameworks in achieving a secure and efficient AI ecosystem.

00:00 Introduction
01:28 What is Prediction Guard?
03:31 Understanding Guardrails in AI
06:49 Security Risks and Responsible AI
13:30 Open Source and Model Security
19:00 Open Platform for Enterprise AI
20:26 Contributing to Open Source Projects
27:12 Final Thoughts

Guest:

Daniel Whitenack (aka Data Dan) is a Ph.D. trained data scientist and founder of Prediction Guard. He has more than ten years of experience developing and deploying machine learning models at scale, and he has built data teams at two startups and an international NGO with 4000+ staff. Daniel co-hosts the Practical AI podcast, has spoken at conferences around the world (ODSC, Applied Machine Learning Days, O’Reilly AI, QCon AI, GopherCon, KubeCon, and more), and occasionally teaches data science/analytics at Purdue University.

  continue reading

87 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide