Gå offline med appen Player FM !
Episode 15: Torsional force microscopy reveals the moiré superlattices
Manage episode 425625839 series 2602554
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Mihir Pendharkar of Stanford University about characterizing electronic properties of twistronics materials. Twistronics refers to a type of electronic device consisting of two-dimensional materials layered at a relative twist angle, forming a new periodic structure known as moiré superlattices. Pendharkar and colleagues studied different configurations of graphene layered with hexagonal boron nitride. Determining the twist angle of any particular sample is extremely time-consuming. By developing a characterization technique called torsional force microscopy, Pendharkar and colleagues have reduced the time to a matter of hours. This work was published in a recent issue of Proceedings of the National Academy of Sciences.
99 episoder
Manage episode 425625839 series 2602554
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Mihir Pendharkar of Stanford University about characterizing electronic properties of twistronics materials. Twistronics refers to a type of electronic device consisting of two-dimensional materials layered at a relative twist angle, forming a new periodic structure known as moiré superlattices. Pendharkar and colleagues studied different configurations of graphene layered with hexagonal boron nitride. Determining the twist angle of any particular sample is extremely time-consuming. By developing a characterization technique called torsional force microscopy, Pendharkar and colleagues have reduced the time to a matter of hours. This work was published in a recent issue of Proceedings of the National Academy of Sciences.
99 episoder
Alla avsnitt
×Välkommen till Player FM
Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.