Artwork

Innehåll tillhandahållet av Machine Learning Street Talk (MLST). Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Street Talk (MLST) eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Patrick Lewis (Cohere) - Retrieval Augmented Generation

1:13:46
 
Dela
 

Manage episode 440266070 series 2803422
Innehåll tillhandahållet av Machine Learning Street Talk (MLST). Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Street Talk (MLST) eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Key topics covered:

- Origins and evolution of Retrieval Augmented Generation (RAG)

- Challenges in evaluating RAG systems and language models

- Human-AI collaboration in research and knowledge work

- Word embeddings and the progression to modern language models

- Dense vs sparse retrieval methods in information retrieval

The discussion also explored broader implications and applications:

- Balancing faithfulness and fluency in RAG systems

- User interface design for AI-augmented research tools

- The journey from chemistry to AI research

- Challenges in enterprise search compared to web search

- The importance of data quality in training AI models

Patrick Lewis: https://www.patricklewis.io/

Cohere Command Models, check them out - they are amazing for RAG!

https://cohere.com/command

TOC

00:00:00 1. Intro to RAG

00:05:30 2. RAG Evaluation: Poll framework & model performance

00:12:55 3. Data Quality: Cleanliness vs scale in AI training

00:15:13 4. Human-AI Collaboration: Research agents & UI design

00:22:57 5. RAG Origins: Open-domain QA to generative models

00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness

00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs

00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention

00:54:04 9. UI for RAG: Human-computer interaction & model optimization

00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces

01:06:43 11. Language Model Evolution: BERT, GPT, and beyond

01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought

Refs:

1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]

https://arxiv.org/abs/2005.11401

2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]

https://arxiv.org/abs/1909.01066

3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]

https://arxiv.org/abs/2009.02252

4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]

https://arxiv.org/abs/1301.3781

5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]

https://nlp.stanford.edu/projects/glove/

6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]

https://arxiv.org/abs/1810.04805

7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]

https://amzn.to/4grEUpG

Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.

  continue reading

193 episoder

Artwork
iconDela
 
Manage episode 440266070 series 2803422
Innehåll tillhandahållet av Machine Learning Street Talk (MLST). Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Street Talk (MLST) eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Dr. Patrick Lewis, who coined the term RAG (Retrieval Augmented Generation) and now works at Cohere, discusses the evolution of language models, RAG systems, and challenges in AI evaluation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmented generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Key topics covered:

- Origins and evolution of Retrieval Augmented Generation (RAG)

- Challenges in evaluating RAG systems and language models

- Human-AI collaboration in research and knowledge work

- Word embeddings and the progression to modern language models

- Dense vs sparse retrieval methods in information retrieval

The discussion also explored broader implications and applications:

- Balancing faithfulness and fluency in RAG systems

- User interface design for AI-augmented research tools

- The journey from chemistry to AI research

- Challenges in enterprise search compared to web search

- The importance of data quality in training AI models

Patrick Lewis: https://www.patricklewis.io/

Cohere Command Models, check them out - they are amazing for RAG!

https://cohere.com/command

TOC

00:00:00 1. Intro to RAG

00:05:30 2. RAG Evaluation: Poll framework & model performance

00:12:55 3. Data Quality: Cleanliness vs scale in AI training

00:15:13 4. Human-AI Collaboration: Research agents & UI design

00:22:57 5. RAG Origins: Open-domain QA to generative models

00:30:18 6. RAG Challenges: Info retrieval, tool use, faithfulness

00:42:01 7. Dense vs Sparse Retrieval: Techniques & trade-offs

00:47:02 8. RAG Applications: Grounding, attribution, hallucination prevention

00:54:04 9. UI for RAG: Human-computer interaction & model optimization

00:59:01 10. Word Embeddings: Word2Vec, GloVe, and semantic spaces

01:06:43 11. Language Model Evolution: BERT, GPT, and beyond

01:11:38 12. AI & Human Cognition: Sequential processing & chain-of-thought

Refs:

1. Retrieval Augmented Generation (RAG) paper / Patrick Lewis et al. [00:27:45]

https://arxiv.org/abs/2005.11401

2. LAMA (LAnguage Model Analysis) probe / Petroni et al. [00:26:35]

https://arxiv.org/abs/1909.01066

3. KILT (Knowledge Intensive Language Tasks) benchmark / Petroni et al. [00:27:05]

https://arxiv.org/abs/2009.02252

4. Word2Vec algorithm / Tomas Mikolov et al. [01:00:25]

https://arxiv.org/abs/1301.3781

5. GloVe (Global Vectors for Word Representation) / Pennington et al. [01:04:35]

https://nlp.stanford.edu/projects/glove/

6. BERT (Bidirectional Encoder Representations from Transformers) / Devlin et al. [01:08:00]

https://arxiv.org/abs/1810.04805

7. 'The Language Game' book / Nick Chater and Morten H. Christiansen [01:11:40]

https://amzn.to/4grEUpG

Disclaimer: This is the sixth video from our Cohere partnership. We were not told what to say in the interview. Filmed in Seattle in June 2024.

  continue reading

193 episoder

Όλα τα επεισόδια

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide