Artwork

Innehåll tillhandahållet av Machine Learning Archives - Software Engineering Daily. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Archives - Software Engineering Daily eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze

53:43
 
Dela
 

Manage episode 284523704 series 1433944
Innehåll tillhandahållet av Machine Learning Archives - Software Engineering Daily. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Archives - Software Engineering Daily eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

The incredible advances in machine learning research in recent years often take time to propagate out into usage in the field. One reason for this is that such “state-of-the-art” results for machine learning performance rely on the use of handwritten, idiosyncratic optimizations for specific hardware models or operating contexts. When developers are building ML-powered systems to deploy in the cloud and at the edge, their goals to ensure the model delivers the best possible functionality and end-user experience- and importantly, their hardware and software stack may require different optimizations to achieve that goal.

OctoML provides a SaaS product called the Octomizer to help developers and AIOps teams deploy ML models most efficiently on any hardware, in any context. The Octomizer deploys its own ML models to analyze your model topology, and optimize, benchmark, and package the model for deployment. The Octomizer generates insights about model performance over different hardware stacks and helps you choose the deployment format that works best for your organization.

Luis Ceze is the Co-Founder and CEO of OctoML. Luis is a founder of the ApacheTVM project, which is the basis for OctoML’s technology. He is also a professor of Computer Science at the University of Washington. Jason Knight is co-founder and CPO at OctoML. Luis and Jason join the show today to talk about how OctoML is automating deep learning engineering, why it’s so important to consider hardware when building deep learning systems, and how the field of deep learning is evolving.

Sponsorship inquiries: sponsor@softwareengineeringdaily.com

The post OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze appeared first on Software Engineering Daily.

  continue reading

176 episoder

Artwork
iconDela
 
Manage episode 284523704 series 1433944
Innehåll tillhandahållet av Machine Learning Archives - Software Engineering Daily. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Machine Learning Archives - Software Engineering Daily eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

The incredible advances in machine learning research in recent years often take time to propagate out into usage in the field. One reason for this is that such “state-of-the-art” results for machine learning performance rely on the use of handwritten, idiosyncratic optimizations for specific hardware models or operating contexts. When developers are building ML-powered systems to deploy in the cloud and at the edge, their goals to ensure the model delivers the best possible functionality and end-user experience- and importantly, their hardware and software stack may require different optimizations to achieve that goal.

OctoML provides a SaaS product called the Octomizer to help developers and AIOps teams deploy ML models most efficiently on any hardware, in any context. The Octomizer deploys its own ML models to analyze your model topology, and optimize, benchmark, and package the model for deployment. The Octomizer generates insights about model performance over different hardware stacks and helps you choose the deployment format that works best for your organization.

Luis Ceze is the Co-Founder and CEO of OctoML. Luis is a founder of the ApacheTVM project, which is the basis for OctoML’s technology. He is also a professor of Computer Science at the University of Washington. Jason Knight is co-founder and CPO at OctoML. Luis and Jason join the show today to talk about how OctoML is automating deep learning engineering, why it’s so important to consider hardware when building deep learning systems, and how the field of deep learning is evolving.

Sponsorship inquiries: sponsor@softwareengineeringdaily.com

The post OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze appeared first on Software Engineering Daily.

  continue reading

176 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela