Artwork

Innehåll tillhandahållet av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

A Reality Check on AI-Driven Medical Assistants

14:00
 
Dela
 

Manage episode 267650792 series 74115
Innehåll tillhandahållet av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
  continue reading

293 episoder

Artwork
iconDela
 
Manage episode 267650792 series 74115
Innehåll tillhandahållet av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Ben Jaffe and Katie Malone, Ben Jaffe, and Katie Malone eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting better care, and achieving better outcomes, with these algorithms in the mix? The answer isn’t no, exactly, but it’s not a resounding yes, because these algorithms interact with a very complex system (the healthcare system) and other shortcomings of that system are proving hard to automate away. Getting a faster diagnosis from an image might not be an improvement if the image is now harder to capture (because of strict data quality requirements associated with the algorithm that wouldn’t stop a human doing the same job). Likewise, an algorithm getting a prediction mostly correct might not be an overall benefit if it introduces more dramatic failures when the prediction happens to be wrong. For every data scientist whose work is deployed into some kind of product, and is being used to solve real-world problems, these papers underscore how important and difficult it is to consider all the context around those problems.
  continue reading

293 episoder

All episodes

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela