Artwork

Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

UbiComp 2024 Distinguished Paper Award: MoCaPose: Motion Capturing with Textile-integrated Capacitive Sensors in Loose-fitting Smart Garments

8:16
 
Dela
 

Manage episode 444861363 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Today we deep dive into one publication that received a UbiComp 2024 distinguished paper awards.

We present MoCaPose, a novel wearable motion capturing (MoCap) approach to continuously track the wearer's upper body's dynamic poses through multi-channel capacitive sensing integrated in fashionable, loose-fitting jackets. Unlike conventional wearable IMU MoCap based on inverse dynamics, MoCaPose decouples the sensor position from the pose system. MoCaPose uses a deep regressor to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive sensors, unbound by specific applications. The concept is implemented through two prototyping iterations to first solve the technical challenges, then establish the textile integration through fashion-technology co-design towards a design-centric smart garment. A 38-hour dataset of synchronized video and capacitive data from 21 participants was recorded for validation. The motion tracking result was validated on multiple levels from statistics (R2 ~ 0.91) and motion tracking metrics (MP JPE ~ 86mm) to the usability in pose and motion recognition (0.9 F1 for 10-class classification with unsupervised class discovery). The design guidelines impose few technical constraints, allowing the wearable system to be design-centric and usecase-specific. Overall, MoCaPose demonstrates that textile-based capacitive sensing with its unique advantages, can be a promising alternative for wearable motion tracking and other relevant wearable motion recognition applications.

https://dl.acm.org/doi/10.1145/3580883

  continue reading

40 episoder

Artwork
iconDela
 
Manage episode 444861363 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Today we deep dive into one publication that received a UbiComp 2024 distinguished paper awards.

We present MoCaPose, a novel wearable motion capturing (MoCap) approach to continuously track the wearer's upper body's dynamic poses through multi-channel capacitive sensing integrated in fashionable, loose-fitting jackets. Unlike conventional wearable IMU MoCap based on inverse dynamics, MoCaPose decouples the sensor position from the pose system. MoCaPose uses a deep regressor to continuously predict the 3D upper body joints coordinates from 16-channel textile capacitive sensors, unbound by specific applications. The concept is implemented through two prototyping iterations to first solve the technical challenges, then establish the textile integration through fashion-technology co-design towards a design-centric smart garment. A 38-hour dataset of synchronized video and capacitive data from 21 participants was recorded for validation. The motion tracking result was validated on multiple levels from statistics (R2 ~ 0.91) and motion tracking metrics (MP JPE ~ 86mm) to the usability in pose and motion recognition (0.9 F1 for 10-class classification with unsupervised class discovery). The design guidelines impose few technical constraints, allowing the wearable system to be design-centric and usecase-specific. Overall, MoCaPose demonstrates that textile-based capacitive sensing with its unique advantages, can be a promising alternative for wearable motion tracking and other relevant wearable motion recognition applications.

https://dl.acm.org/doi/10.1145/3580883

  continue reading

40 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela