Artwork

Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Detecting an Offset-Adjusted Similarity Score based on Duchenne Smiles

8:49
 
Dela
 

Manage episode 443660552 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Detecting interpersonal synchrony in the wild through ubiquitous wearable sensing invites promising new social insights as well as the possibility of new interactions between humans-humans and humans-agents. We present the Offset-Adjusted SImilarity Score (OASIS), a real-time method of detecting similarity which we show working on visual detection of Duchenne smile between a pair of users. We conduct a user study survey (N = 27) to measure a user-based interoperability score on smile similarity and compare the user score with OASIS as well as the rolling window Pearson correlation and the Dynamic Time Warping (DTW) method. Ultimately, our results indicate that our algorithm has intrinsic qualities comparable to the user score and measures well to the statistical correlation methods. It takes the temporal offset between the input signals into account with the added benefit of being an algorithm which can be adapted to run in real-time will less computational intensity than traditional time series correlation methods.

https://dl.acm.org/doi/10.1145/3544549.3585709

  continue reading

31 episoder

Artwork
iconDela
 
Manage episode 443660552 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Detecting interpersonal synchrony in the wild through ubiquitous wearable sensing invites promising new social insights as well as the possibility of new interactions between humans-humans and humans-agents. We present the Offset-Adjusted SImilarity Score (OASIS), a real-time method of detecting similarity which we show working on visual detection of Duchenne smile between a pair of users. We conduct a user study survey (N = 27) to measure a user-based interoperability score on smile similarity and compare the user score with OASIS as well as the rolling window Pearson correlation and the Dynamic Time Warping (DTW) method. Ultimately, our results indicate that our algorithm has intrinsic qualities comparable to the user score and measures well to the statistical correlation methods. It takes the temporal offset between the input signals into account with the added benefit of being an algorithm which can be adapted to run in real-time will less computational intensity than traditional time series correlation methods.

https://dl.acm.org/doi/10.1145/3544549.3585709

  continue reading

31 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide