Artwork

Innehåll tillhandahållet av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

#149 Recommender Systems: Funktionsweise und Forschungstrends mit Eva Zangerle

1:11:03
 
Dela
 

Manage episode 449748914 series 3432292
Innehåll tillhandahållet av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Recommender Systems: Was steckt hinter modernen Empfehlungsalgorithmen?

Moderne Empfehlungsalgorithmen begegnen uns im Alltag überall: Die nächste Serie bei Netflix, die “für dich zusammengestellte Playlist” bei Spotify oder “Kunden, die diesen Artikel gekauft haben, kauften auch” bei Amazon. In Zeiten von AI könnten wir meinen, dass dies alles schwarze Magie ist. Doch i.d.R. folgen die Empfehlungen gewissen Logiken. All das ganze wird im Research Bereich “Recommender Systems” genannt.

Dies ist auch das Thema dieser Episode. Prof. Dr. Eva Zangerle, eine Expertin im Bereich Recommender System erklärt uns, was Recommender Systems eigentlich sind, welche Grundlegenden Ansätze für Empfehlungsalgorithmen existieren, wie viele Daten benötigt werden um sinnvolle Ergebnisse zu erzielen, was das Cold-Start Problem ist, wie Forscher evaluieren können, ob es gute oder schlechte Empfehlungen sind, was die Begriffe Recall und Precision eigentlich bedeuten, ob Empfehlungsalgorithmen auch einen gewissen Bias entwickeln können sowie welche Trends auf dem Forschungsgebiet zur Zeit aktuell sind.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Gerne behandeln wir auch euer Audio Feedback in einer der nächsten Episoden, einfach die Audiodatei per Email an stehtisch@engineeringkiosk.dev.

Links

Sprungmarken

(00:00:00) Recommender Systems mit Eva Zangerle

(00:06:07) RecSys - Die ACM Recommender Systems Conference

(00:06:31) Info/Werbung

(00:07:31) RecSys - Die ACM Recommender Systems Conference

(00:17:58) User Profile und Kontexte in Recommender Systems

(00:25:38) Wie baut man ein Recommender Systems auf?

(00:36:02) Das Cold-Start Problem, balancierte Algorithmen und das Habsburger-Problem

(00:42:37) Evaluierung von Recommender Systems: Precision und Recall

(00:51:55) AI und LLMs als Empfehlungs-Assistent

(00:55:51) Spezielle Datenbank-Systeme, Sequential Recommendation und Audio Recommendations

(01:01:22) Key Trends in der Recommender Systems und Information Retrieval Szene

(01:09:09) Empfehlung für den Einstieg in Recommender Systems

Hosts

Feedback

  continue reading

152 episoder

Artwork
iconDela
 
Manage episode 449748914 series 3432292
Innehåll tillhandahållet av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Wolfgang Gassler, Andy Grunwald, Wolfgang Gassler, and Andy Grunwald eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Recommender Systems: Was steckt hinter modernen Empfehlungsalgorithmen?

Moderne Empfehlungsalgorithmen begegnen uns im Alltag überall: Die nächste Serie bei Netflix, die “für dich zusammengestellte Playlist” bei Spotify oder “Kunden, die diesen Artikel gekauft haben, kauften auch” bei Amazon. In Zeiten von AI könnten wir meinen, dass dies alles schwarze Magie ist. Doch i.d.R. folgen die Empfehlungen gewissen Logiken. All das ganze wird im Research Bereich “Recommender Systems” genannt.

Dies ist auch das Thema dieser Episode. Prof. Dr. Eva Zangerle, eine Expertin im Bereich Recommender System erklärt uns, was Recommender Systems eigentlich sind, welche Grundlegenden Ansätze für Empfehlungsalgorithmen existieren, wie viele Daten benötigt werden um sinnvolle Ergebnisse zu erzielen, was das Cold-Start Problem ist, wie Forscher evaluieren können, ob es gute oder schlechte Empfehlungen sind, was die Begriffe Recall und Precision eigentlich bedeuten, ob Empfehlungsalgorithmen auch einen gewissen Bias entwickeln können sowie welche Trends auf dem Forschungsgebiet zur Zeit aktuell sind.

Unsere aktuellen Werbepartner findest du auf https://engineeringkiosk.dev/partners

Das schnelle Feedback zur Episode:

👍 (top) 👎 (geht so)

Feedback

Gerne behandeln wir auch euer Audio Feedback in einer der nächsten Episoden, einfach die Audiodatei per Email an stehtisch@engineeringkiosk.dev.

Links

Sprungmarken

(00:00:00) Recommender Systems mit Eva Zangerle

(00:06:07) RecSys - Die ACM Recommender Systems Conference

(00:06:31) Info/Werbung

(00:07:31) RecSys - Die ACM Recommender Systems Conference

(00:17:58) User Profile und Kontexte in Recommender Systems

(00:25:38) Wie baut man ein Recommender Systems auf?

(00:36:02) Das Cold-Start Problem, balancierte Algorithmen und das Habsburger-Problem

(00:42:37) Evaluierung von Recommender Systems: Precision und Recall

(00:51:55) AI und LLMs als Empfehlungs-Assistent

(00:55:51) Spezielle Datenbank-Systeme, Sequential Recommendation und Audio Recommendations

(01:01:22) Key Trends in der Recommender Systems und Information Retrieval Szene

(01:09:09) Empfehlung für den Einstieg in Recommender Systems

Hosts

Feedback

  continue reading

152 episoder

Alle episoder

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide