Artwork

Innehåll tillhandahållet av EDGE AI FOUNDATION. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av EDGE AI FOUNDATION eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse

20:34
 
Dela
 

Manage episode 444991878 series 3574631
Innehåll tillhandahållet av EDGE AI FOUNDATION. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av EDGE AI FOUNDATION eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Send us a text

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Kapitel

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

20 episoder

Artwork
iconDela
 
Manage episode 444991878 series 3574631
Innehåll tillhandahållet av EDGE AI FOUNDATION. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av EDGE AI FOUNDATION eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Send us a text

Unlock the secrets of deploying TinyML models in real-world scenarios with Alessandro Grande, Head of Product at Edge Impulse. Curious about how TinyML has evolved since its early days? Alessandro takes us through a journey from his initial demos at Arm to the sophisticated, scalable deployments we see today. Learn why continuous model monitoring is not just important but essential for the reliability and functionality of machine learning applications, especially in large-scale IoT deployments. Alessandro shares actionable insights on how to maintain a continuous lifecycle for ML models to handle unpredictable changes and ensure sustained success.
Delve into the intricacies of health-related use cases with a spotlight on the HIFE AI cough monitoring system. Discover best practices for data collection and preparation, including identifying outliers and leveraging Generative AI like ChatGPT 4.0 for efficient data labeling. We also emphasize the importance of building scalable infrastructure for automated ML development. Learn how continuous integration and continuous deployment (CI/CD) pipelines can enhance the lifecycle management of ML models, ensuring security and scalability from day one. This episode is a treasure trove of practical advice for anyone tackling the challenges of deploying ML models in diverse environments.

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

Kapitel

1. Deploying TinyML Models at Scale: Insights on Monitoring and Automation with Alessandro Grande of Edge Impulse (00:00:00)

2. Model Monitoring in Real-World Deployment (00:00:05)

3. Health Workflow and Data Collection (00:11:26)

4. Automated Model Deployment in Production (00:18:14)

20 episoder

همه قسمت ها

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide