Artwork

Innehåll tillhandahållet av Aiven. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Aiven eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Hot and cold data with Apache Kafka, Tiered Storage, and Iceberg

48:58
 
Dela
 

Manage episode 429150924 series 3575842
Innehåll tillhandahållet av Aiven. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Aiven eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Utilizing the true potential of data streaming is key to business success.

In this Data (R)evolution episode, we're joined by Josep Prat and Filip Yonov to dive into the transformative features of Apache Kafka and its evolving role in data architecture. They discuss the critical importance of collaboration and feedback in enhancing Kafka's capabilities, the future of "lake house" technology, exciting updates from the Open Source Program Office (OSPO), and the importance of Kafka's readiness to support evolving data formats—making it a backbone for modern data ecosystems.

Key Takeaways:

  1. Community collaboration and contribution are essential for the continuous improvement and testing of Apache Kafka's capabilities
  2. The evolution of Apache Kafka into a more versatile platform, combined with object storage and open table formats, can significantly enhance real-time data streaming, analytics, and the future of "lake house" technology
  3. Tiered storage in Kafka facilitates more efficient and cost-effective data management by decoupling storage from computing

Resources:

Timestamps:

[05:49] Kafka servers have theoretical storage limits

[09:29] Test storage proposal process for Apache Kafka

[17:38] LinkedIn conducted an experiment merging Xcode versions

[22:11] Data lake evolving into lake house architectures

[25:00] Broker pushes data to remote storage, plugin handles retrieval and format translation

[26:40] Kafka excels at high-speed, high-volume data

[32:18] Kafka data consumption evolving with new options

[40:19] Managing metadata for conversion on community level

[47:45] Kafka's potential as a widely used API

  continue reading

11 episoder

Artwork
iconDela
 
Manage episode 429150924 series 3575842
Innehåll tillhandahållet av Aiven. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Aiven eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Utilizing the true potential of data streaming is key to business success.

In this Data (R)evolution episode, we're joined by Josep Prat and Filip Yonov to dive into the transformative features of Apache Kafka and its evolving role in data architecture. They discuss the critical importance of collaboration and feedback in enhancing Kafka's capabilities, the future of "lake house" technology, exciting updates from the Open Source Program Office (OSPO), and the importance of Kafka's readiness to support evolving data formats—making it a backbone for modern data ecosystems.

Key Takeaways:

  1. Community collaboration and contribution are essential for the continuous improvement and testing of Apache Kafka's capabilities
  2. The evolution of Apache Kafka into a more versatile platform, combined with object storage and open table formats, can significantly enhance real-time data streaming, analytics, and the future of "lake house" technology
  3. Tiered storage in Kafka facilitates more efficient and cost-effective data management by decoupling storage from computing

Resources:

Timestamps:

[05:49] Kafka servers have theoretical storage limits

[09:29] Test storage proposal process for Apache Kafka

[17:38] LinkedIn conducted an experiment merging Xcode versions

[22:11] Data lake evolving into lake house architectures

[25:00] Broker pushes data to remote storage, plugin handles retrieval and format translation

[26:40] Kafka excels at high-speed, high-volume data

[32:18] Kafka data consumption evolving with new options

[40:19] Managing metadata for conversion on community level

[47:45] Kafka's potential as a widely used API

  continue reading

11 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide