Artwork

Innehåll tillhandahållet av CCC media team. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av CCC media team eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Privatsphäreschonende Gesundheitsdatenverarbeitung (DS2024)

41:57
 
Dela
 

Manage episode 441261777 series 48696
Innehåll tillhandahållet av CCC media team. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av CCC media team eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

2952 episoder

Artwork
iconDela
 
Manage episode 441261777 series 48696
Innehåll tillhandahållet av CCC media team. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av CCC media team eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

2952 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide