Artwork

Innehåll tillhandahållet av Daniel Filan. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Filan eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

24 - Superalignment with Jan Leike

2:08:29
 
Dela
 

Manage episode 372327170 series 2844728
Innehåll tillhandahållet av Daniel Filan. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Filan eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Recently, OpenAI made a splash by announcing a new "Superalignment" team. Lead by Jan Leike and Ilya Sutskever, the team would consist of top researchers, attempting to solve alignment for superintelligent AIs in four years by figuring out how to build a trustworthy human-level AI alignment researcher, and then using it to solve the rest of the problem. But what does this plan actually involve? In this episode, I talk to Jan Leike about the plan and the challenges it faces.

Patreon: patreon.com/axrpodcast

Ko-fi: ko-fi.com/axrpodcast

Episode art by Hamish Doodles: hamishdoodles.com/

Topics we discuss, and timestamps:

- 0:00:37 - The superalignment team

- 0:02:10 - What's a human-level automated alignment researcher?

- 0:06:59 - The gap between human-level automated alignment researchers and superintelligence

- 0:18:39 - What does it do?

- 0:24:13 - Recursive self-improvement

- 0:26:14 - How to make the AI AI alignment researcher

- 0:30:09 - Scalable oversight

- 0:44:38 - Searching for bad behaviors and internals

- 0:54:14 - Deliberately training misaligned models

- 1:02:34 - Four year deadline

- 1:07:06 - What if it takes longer?

- 1:11:38 - The superalignment team and...

- 1:11:38 - ... governance

- 1:14:37 - ... other OpenAI teams

- 1:18:17 - ... other labs

- 1:26:10 - Superalignment team logistics

- 1:29:17 - Generalization

- 1:43:44 - Complementary research

- 1:48:29 - Why is Jan optimistic?

- 1:58:32 - Long-term agency in LLMs?

- 2:02:44 - Do LLMs understand alignment?

- 2:06:01 - Following Jan's research

The transcript: axrp.net/episode/2023/07/27/episode-24-superalignment-jan-leike.html

Links for Jan and OpenAI:

- OpenAI jobs: openai.com/careers

- Jan's substack: aligned.substack.com

- Jan's twitter: twitter.com/janleike

Links to research and other writings we discuss:

- Introducing Superalignment: openai.com/blog/introducing-superalignment

- Let's Verify Step by Step (process-based feedback on math): arxiv.org/abs/2305.20050

- Planning for AGI and beyond: openai.com/blog/planning-for-agi-and-beyond

- Self-critiquing models for assisting human evaluators: arxiv.org/abs/2206.05802

- An Interpretability Illusion for BERT: arxiv.org/abs/2104.07143

- Language models can explain neurons in language models https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

- Our approach to alignment research: openai.com/blog/our-approach-to-alignment-research

- Training language models to follow instructions with human feedback (aka the Instruct-GPT paper): arxiv.org/abs/2203.02155

  continue reading

42 episoder

Artwork
iconDela
 
Manage episode 372327170 series 2844728
Innehåll tillhandahållet av Daniel Filan. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Daniel Filan eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Recently, OpenAI made a splash by announcing a new "Superalignment" team. Lead by Jan Leike and Ilya Sutskever, the team would consist of top researchers, attempting to solve alignment for superintelligent AIs in four years by figuring out how to build a trustworthy human-level AI alignment researcher, and then using it to solve the rest of the problem. But what does this plan actually involve? In this episode, I talk to Jan Leike about the plan and the challenges it faces.

Patreon: patreon.com/axrpodcast

Ko-fi: ko-fi.com/axrpodcast

Episode art by Hamish Doodles: hamishdoodles.com/

Topics we discuss, and timestamps:

- 0:00:37 - The superalignment team

- 0:02:10 - What's a human-level automated alignment researcher?

- 0:06:59 - The gap between human-level automated alignment researchers and superintelligence

- 0:18:39 - What does it do?

- 0:24:13 - Recursive self-improvement

- 0:26:14 - How to make the AI AI alignment researcher

- 0:30:09 - Scalable oversight

- 0:44:38 - Searching for bad behaviors and internals

- 0:54:14 - Deliberately training misaligned models

- 1:02:34 - Four year deadline

- 1:07:06 - What if it takes longer?

- 1:11:38 - The superalignment team and...

- 1:11:38 - ... governance

- 1:14:37 - ... other OpenAI teams

- 1:18:17 - ... other labs

- 1:26:10 - Superalignment team logistics

- 1:29:17 - Generalization

- 1:43:44 - Complementary research

- 1:48:29 - Why is Jan optimistic?

- 1:58:32 - Long-term agency in LLMs?

- 2:02:44 - Do LLMs understand alignment?

- 2:06:01 - Following Jan's research

The transcript: axrp.net/episode/2023/07/27/episode-24-superalignment-jan-leike.html

Links for Jan and OpenAI:

- OpenAI jobs: openai.com/careers

- Jan's substack: aligned.substack.com

- Jan's twitter: twitter.com/janleike

Links to research and other writings we discuss:

- Introducing Superalignment: openai.com/blog/introducing-superalignment

- Let's Verify Step by Step (process-based feedback on math): arxiv.org/abs/2305.20050

- Planning for AGI and beyond: openai.com/blog/planning-for-agi-and-beyond

- Self-critiquing models for assisting human evaluators: arxiv.org/abs/2206.05802

- An Interpretability Illusion for BERT: arxiv.org/abs/2104.07143

- Language models can explain neurons in language models https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

- Our approach to alignment research: openai.com/blog/our-approach-to-alignment-research

- Training language models to follow instructions with human feedback (aka the Instruct-GPT paper): arxiv.org/abs/2203.02155

  continue reading

42 episoder

כל הפרקים

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide