Artwork

Innehåll tillhandahållet av Connected Data World. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Connected Data World eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Deep Learning on Graphs: Past, Present, And Future | Michael Bronstein

29:33
 
Dela
 

Manage episode 437651405 series 2773575
Innehåll tillhandahållet av Connected Data World. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Connected Data World eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Graph representation learning has recently become one of the hottest topics in machine learning.

One particular instance, graph neural networks, is being used in a broad spectrum of applications ranging from 3D computer vision and graphics to high energy physics and drug design.

Despite the promise and a series of success stories of graph deep learning methods, we have not witnessed so far anything close to the smashing success convolutional networks have had in computer vision.

In this Michael Bronstein outlines his views on the possible reasons and how the field could progress in the next few years.

--

Michael Bronstein is a professor at Imperial College London, where he holds the Chair in Machine Learning and Pattern Recognition, and Head of Graph Learning Research at Twitter. He also heads ML research in Project CETI, a TED Audacious Prize-winning collaboration aimed at understanding the communication of sperm whales.

--

👉 For more Deep Learning on Knowledge Graphs, Graph Data Science and AI, Graph Databases and Semantic Technology, join Connected Data London this December - Book Your Ticket Now

  continue reading

39 episoder

Artwork
iconDela
 
Manage episode 437651405 series 2773575
Innehåll tillhandahållet av Connected Data World. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Connected Data World eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

Graph representation learning has recently become one of the hottest topics in machine learning.

One particular instance, graph neural networks, is being used in a broad spectrum of applications ranging from 3D computer vision and graphics to high energy physics and drug design.

Despite the promise and a series of success stories of graph deep learning methods, we have not witnessed so far anything close to the smashing success convolutional networks have had in computer vision.

In this Michael Bronstein outlines his views on the possible reasons and how the field could progress in the next few years.

--

Michael Bronstein is a professor at Imperial College London, where he holds the Chair in Machine Learning and Pattern Recognition, and Head of Graph Learning Research at Twitter. He also heads ML research in Project CETI, a TED Audacious Prize-winning collaboration aimed at understanding the communication of sperm whales.

--

👉 For more Deep Learning on Knowledge Graphs, Graph Data Science and AI, Graph Databases and Semantic Technology, join Connected Data London this December - Book Your Ticket Now

  continue reading

39 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide