Artwork

Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

ISMAR 2024 Do you read me? (E)motion Legibility of Virtual Reality Character Representations

10:35
 
Dela
 

Manage episode 465362228 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

40 episoder

Artwork
iconDela
 
Manage episode 465362228 series 3605621
Innehåll tillhandahållet av Kai Kunze. Allt poddinnehåll inklusive avsnitt, grafik och podcastbeskrivningar laddas upp och tillhandahålls direkt av Kai Kunze eller deras podcastplattformspartner. Om du tror att någon använder ditt upphovsrättsskyddade verk utan din tillåtelse kan du följa processen som beskrivs här https://sv.player.fm/legal.

K. Brandstätter, B. J. Congdon and A. Steed, "Do you read me? (E)motion Legibility of Virtual Reality Character Representations," 2024 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bellevue, WA, USA, 2024, pp. 299-308, doi: 10.1109/ISMAR62088.2024.00044.

We compared the body movements of five virtual reality (VR) avatar representations in a user study (N=53) to ascertain how well these representations could convey body motions associated with different emotions: one head-and-hands representation using only tracking data, one upper-body representation using inverse kinematics (IK), and three full-body representations using IK, motioncapture, and the state-of-the-art deep-learning model AGRoL. Participants’ emotion detection accuracies were similar for the IK and AGRoL representations, highest for the full-body motion-capture representation and lowest for the head-and-hands representation. Our findings suggest that from the perspective of emotion expressivity, connected upper-body parts that provide visual continuity improve clarity, and that current techniques for algorithmically animating the lower-body are ineffective. In particular, the deep-learning technique studied did not produce more expressive results, suggesting the need for training data specifically made for social VR applications.

https://ieeexplore.ieee.org/document/10765392

  continue reading

40 episoder

Alla avsnitt

×
 
Loading …

Välkommen till Player FM

Player FM scannar webben för högkvalitativa podcasts för dig att njuta av nu direkt. Den är den bästa podcast-appen och den fungerar med Android, Iphone och webben. Bli medlem för att synka prenumerationer mellan enheter.

 

Snabbguide

Lyssna på det här programmet medan du utforskar
Spela